Oxygen Deficit: The Bio-energetic Pathophysiology

  • ABHAY KUMAR PANDEY Department of Physiology, Institute of Medical Sciences, BHU, Varanasi 221005


Scarcity of oxygen in humans arises via three modes. The environment may have low oxygen to breath. There can be disease in respiratory system causing hindrance to uptake of oxygen from environment and the circulatory system may be sluggish to supply to body parts that starve for oxygen. Thirdly the chemico-cellular components of blood which carry oxygen may be lowered or defective. In reference to body cells several limiting sites and mechanisms affect the amount of oxygen delivered to them, and these are under regulatory control of several functional and metabolic systems.


Download data is not yet available.


Belousova, V.V., Dudchenko, A.M., Lukjanova, L.D. (1992). The correlation of energy-consuming and energy-synthesizing reactions in rat hepatocytes in different O2-deficient states. Biull Eksp Biol Med, 114(12), 588-590.
Chambers, D.E., Parks, D.A., Patterson, G., Roy, R., McCord, J.M., Yoshida, S., Parmley, L.F., Downey, J.M. (1985). Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol, 17(2), 145-152.
Dawson, T.L., Gores, G.J., Nieminen, A.L., Herman, B., Lemasters, J.J. (1993). Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol, 264 (4), C961- C967.
Dudchenko, A.M., Luk'ianova, L.D. (1996). Effect of adapting to periodic hypoxia on kinetic parameters of respiratory chain enzymes in the rat brain. Biull Eksp Biol Med, 121(3), 252-255.
Jennings, R.B., Gannote, C.E. (1976). Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res, 38(5) I80-I91.
Livanova, L.M., Sarkisova, K.Yu., Luk'yanova, L.D., Kolomeitseva, I.A. (1992). Respiration and oxidative phosphorylation of the mitochondria of the brain of rats with various types of behaviour. Neurosci Behav Physiol, 22(6), 519-525.
Lukjanova, L.D. (1996). In Adaptation: Biology and medicine. BK Sharma, N Takeda, NK Ganguly et al (ed) Vol 1. New Delhi, ICMR, pp 261-279.
Mela, L., Goodwin, C.W., Viller, L.D. (1976). In vivo control of mitochondrial enzyme concentrations and activity by oxygen. Am J Physiol, 231(6) 1811-1816.
Narabayashi, H., Takeshige, K., Minakami, S. (1982). Alteration of inner-membrane components and damage to electron-transfer activities of bovine heart sub-mitochondrial particles induced by NADPH-dependent lipid peroxidation. Biochem J, 202(1) 97-105.
Okayasu, T., Curtis, M.T., Farber, J.L. (1985). Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury. Arch Biochem Biophys, 236(2), 638-645.
Pelican, P.C., Niemann, J.T., Xia , G.Z., Jagels, G., Criley, J.M. (1987). Enhancement of mitochondrial oxidative phosphorylation capability by hypoperfusion in isolated perfused rat heart. Circ Res, 61(6) 880-888.
Rouslin, W., Millard, R.W. (1980). Canine myocardial ischemia: defect in mitochondrial electron transfer complex I. J Mol Cell Cardiol, 12(6), 639-645.
Toleikis, A., Dzeja, P., Praskevicius, A., Jasaitis, A. (1980). Mitochondrial functions in ischemic myocardium. I. Proton electrochemical gradient, inner membrane permeability, calcium transport and oxidative phosphorylation in isolated mitochondria. J Mol Cell Cardiol, 11(1), 57-76.
Veitch, K., Hombroeckx, A., Caucheteux, D., Pouleur, H., Hue, L. (1992). Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage. Biochem J, 281(3), 709-715.
How to Cite
PANDEY, A. (2014). Oxygen Deficit: The Bio-energetic Pathophysiology. International Journal of Applied Exercise Physiology, 3(1), 60-68. Retrieved from http://www.ijaep.com/index.php/IJAE/article/view/24
Applied Exercise Physiology