Validity and reliability of incremental test to determine the anaerobic threshold in swimming rats

  • Wladimir Rafael Beck Laboratory of Applied Sport Physiology, School of Applied Sciences, Department of Sport Sciences, University of Campinas. Address: Pedro Zaccaria Street, 1.300, Jardim Santa Luíza – Postal Code 13484-350 – Limeira – São Paulo
  • Yuri S. Campesan Laboratory of Applied Sport Physiology, School of Applied Sciences, Department of Sport Sciences, University of Campinas. Address: Pedro Zaccaria Street, 1.300, Jardim Santa Luíza – Postal Code 13484-350 – Limeira – São Paulo
  • Claudio Alexandre Gobatto Laboratory of Applied Sport Physiology, School of Applied Sciences, Department of Sport Sciences, University of Campinas. Address: Pedro Zaccaria Street, 1.300, Jardim Santa Luíza – Postal Code 13484-350 – Limeira – São Paulo

Abstract

The organic and metabolic consequences of physical exercise are critically modulated depending of the effort intensity and volume. Nevertheless, most of the protocols employed for objectively determine the individual exercise intensities for rats are impractical or unadvisable for various experimental designs. The aim of this study was to individually determine the anaerobic threshold intensity (iAnT) and the maximal lactate steady state (MLSS, gold standard procedure) intensities using a single incremental swimming test for rats, verifying it validity and reliability. Eleven male Wistar rats were submitted twice (48 hours of interval) to an incremental test with overloads from 3% of body mass (%bm), increments of 0.5%bm and stages of 5 min. From blood lactate concentration and %bm data were constructed two linear regressions to determine iAnT. Then, all of the animals performed the MLSS procedure based on iAnT. Comparing iAnT test and re-test were found significant intraclass correlation (r = 0.67; p = 0.01), no significant difference (p = 0.91), coefficient of variation of 4.04% and effect size of 0.02, beyond good agreement, precision and accuracy attested by Bland-Altman plots (bias of 0.010). Furthermore, iAnT was not different from MLSS intensity. A single incremental swimming test comprises a high applicable, valid and reliable tool for objectively and individually determines exercise intensity of swimming rats.

Keywords: Anaerobic threshold; exercise intensity; lactataemia; maximal lactate steady state; swimming rats

Downloads

Download data is not yet available.

References

Almeida, J.A., B, A.P., Gomes, C.P., Araujo, R.C., Pereira, R.W. & Franco, O.L. (2014). Exercise training at MLSS decreases weight gain and increases aerobic capacity in obese Zucker rats. Int J Sports Med. 35: 199-202.
Almeida, J.A., Petriz, B.A., Gomes, C.P., Rocha, L.A., Pereira, R.W. & Franco, O.L. (2013). Determination of the maximal lactate steady state in obese Zucker rats. Int J Sports Med. 34: 214-217.
Almeida, J.A., Petriz Bde, A., da Costa Gomes, C.P., Pereira, R.W. & Franco, O.L. (2012). Assessment of maximal lactate steady state during treadmill exercise in SHR. BMC Res Notes. 5: 661.
Beck, W.R., Araujo, G.G. & Gobatto, C.A. (2012). Methods of exercise intensity and lactataemia determination of lactate minimum test in rats. Comp Exerc Physiol. 8: 113-116.
Beck, W.R., de Araujo, G.G., Scariot, P.P.M., dos Reis, I.G.M. & Gobatto, C.A. (2014a). Time to exhaustion at anaerobic threshold in swimming rats: metabolic investigation. Bratisl Med J. 115: 5.
Beck, W.R., Ribeiro, L.F.P., Scariot, P.P.M., dos Reis, I.G.M. & Gobatto, C.A. (2014b). Time of day effects on aerobic capacity, muscle glycogen content and performance assessment in swimming rats. Sci Sports. 29: 319-323.
Beneke, R. (2003). Methodological aspects of maximal lactate steady state-implications for performance testing. Eur J Appl Physiol. 89: 95-99.
Billat, V.L., Sirvent, P., Py, G., Koralsztein, J.P. & Mercier, J. (2003). The concept of maximal lactate steady state - A bridge between biochemistry, physiology and sport science. Sports Med. 33: 407-426.
Botezelli, J.D., Mora, R.F., Dalia, R.A., Moura, L.P., Cambri, L.T., Ghezzi, A.C., Voltarelli, F.A. & Mello, M.A. (2010). Exercise counteracts fatty liver disease in rats fed on fructose-rich diet. Lipids Health Dis. 9: 116.
Cambri, L.T., Dalia, R.A., Ribeiro, C. & Rostom de Mello, M.A. (2010). Aerobic capacity of rats recovered from fetal malnutrition with a fructose-rich diet. Appl Physiol Nutr Metab. 35: 490-497.
Carvalho, J.F., Masuda, M.O. & Pompeu, F.A. (2005). Method for diagnosis and control of aerobic training in rats based on lactate threshold. Comp Biochem Physiol A Mol Integr Physiol. 140: 409-413.
Cunha, R.R., Cunha, V.N., Segundo, P.R., Moreira, S.R., Kokubun, E., Campbell, C.S., de Oliveira, R.J. & Simoes, H.G. (2009). Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats. Cell Biochem Funct. 27: 351-357.
Da Silva, A.S., Pauli, J.R., Ropelle, E.R., Oliveira, A.G., Cintra, D.E., De Souza, C.T., Velloso, L.A., Carvalheira, J.B. & Saad, M.J. (2010). Exercise intensity, inflammatory signaling, and insulin resistance in obese rats. Med Sci Sports Exerc. 42: 2180-2188.
de Araujo, G.G., Papoti, M., B., M.F., de Mello, M.A. & Gobatto, C.A. (2007). Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comp Biochem Physiol A Mol Integr Physiol. 148: 888-892.
de Araujo, G.G., Papoti, M., Delbin, M.A., Zanesco, A. & Gobatto, C.A. (2013a). Physiological adaptations during endurance training below anaerobic threshold in rats. Eur J Appl Physiol. 113: 1859-1870.
de Araujo, G.G., Papoti, M., Manchado-Gobatto, F.D., de Mello, M.A.R. & Gobatto, C.A. (2013b). Monitoring chronic physical stress using biomarkers, performance protocols and mathematical functions to identify physiological adaptations in rats. Lab Anim. 47: 36-42.
Gobatto, C.A., de Mello, M.A., Sibuya, C.Y., de Azevedo, J.R., dos Santos, L.A. & Kokubun, E. (2001). Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 130: 21-27.
Gobatto, C.A., Kokubun, E., Sibuya, C.Y. & Mello, M.A.R. (1991). Efeitos da desnutrição proteico-calórica e do treinamento físico na produção de ácido lático em ratos machos adultos após o teste de cargas progressivas: resultados preliminares. Ciência e Cultura. 43: 725-726.
Gobatto, C.A., Manchado-Gobatto, F.B., Carneiro, L.G., de Araujo, G.G. & dos Reis, I.G.M. (2009). Maximal lactate steady state for aerobic evaluation of swimming mice. Comp Exerc Physiol. 6: 99-103.
Gobatto, C.A., Scariot, P.P.M., Ribeiro, L.F.P. & Manchado-Gobatto, F.B. (2013). Critical load estimation in Young swimming rats using hyperbolic and linear models. Comp Exerc Physiol. 9: 85-91.
Gondim, F.J., Zoppi, C.C., Pereira-da-Silva, L. & de Macedo, D.V. (2007). Determination of the anaerobic threshold and maximal lactate steady state speed in equines using the lactate minimum speed protocol. Comp Biochem Physiol A Mol Integr Physiol. 146: 375-380.
Heck, H., Mader, A., Hess, G., Mucke, S., Muller, R. & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 6: 117-130.
Hopkins, W.G. (2000). Measures of reliability in sports medicine and science. Sports Med. 30: 1-15.
Kindermann, W., Simon, G. & Keul, J. (1979). The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol Occup Physiol. 42: 25-34.
Lima, F.D., Stamm, D.N., Della-Pace, I.D., Dobrachinski, F., de Carvalho, N.R., Royes, L.F., Soares, F.A., Rocha, J.B., Gonzalez-Gallego, J. & Bresciani, G. (2013). Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts. PLoS One. 8: e55668.
Mader, A., Liesen, H. & Heck, H. (1976). Zur beurteliung der sportartspezifischen ausdaurleitusgsfähigkeit im labor. Sportarzt Sportmed. 27: 109-112.
Manchado-Gobatto, F.B., Gobatto, C.A., Contarteze, R.V. & Mello, M.A. (2011). Non-exhaustive test for aerobic capacity determination in running rats. Indian J Exp Biol. 49: 781-785.
Manchado, F.B., Gobatto, C.A., Contarteze, R.V.L., Papoti, M. & Mello, M.A.R. (2005). Maximal lactate steady state in running rats. J Exerc Physiol-on line. 8: e-29 - e35.
Matsumoto, I., Araki, H., Tsuda, K., Odajima, H., Nishima, S., Higaki, Y., Tanaka, H., Tanaka, M. & Shindo, M. (1999). Effects of swimming training on aerobic capacity and exercise induced bronchoconstriction in children with bronchial asthma. Thorax. 54: 196-201.
Tegtbur, U., Busse, M.W. & Braumann, K.M. (1993). Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc. 25: 620-627.
Voltarelli, F.A., Gobatto, C.A. & de Mello, M.A.R. (2002). Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res. 35: 1389-1394.
Zagatto, A.M., Papoti, M. & Gobatto, C.A. (2008). Validity of critical frequency test for measuring table tennis aerobic endurance through specific protocol. J Sports Sci Med. 7: 461-466.
Published
2015-04-16
How to Cite
Rafael Beck, W., S. Campesan, Y., & Alexandre Gobatto, C. (2015). Validity and reliability of incremental test to determine the anaerobic threshold in swimming rats. International Journal of Applied Exercise Physiology, 4(1), 25-33. Retrieved from http://www.ijaep.com/index.php/IJAE/article/view/29
Section
Applied Exercise Physiology